Unraveling the intellectual and formative path of E. Husserl through his mathematical influences
DOI:
https://doi.org/10.31977/grirfi.v24i3.4868Keywords:
Husserl; Teoría de conjuntos; Variedades; Números; Fenomenología temprana.Abstract
The objective of this work is to present and articulate the most immediate intellectual landscape that Husserl appropriated during his early years of training, specifically in relation to the research of B. Riemann, R. Dedekind, and G. Cantor. In particular, it seeks to highlight Husserl's philosophical reappropriation of the different mathematical concepts utilized by the aforementioned scholars. This is done under the hypothesis that within the intellectual horizon of the young Husserl, we find points of convergence with the emergence of modern set theory. The recognition of these antecedents is more than sufficient reason to justify a work such as the one I will present here. Therefore, I will begin with a review of the works of Riemann, Dedekind, and Cantor, while simultaneously showing their influences on Husserl's work, and finally presenting the pertinent conclusions.
Downloads
References
BELNA, J.P. La notion de nombre chez Dedekind, Cantor, Frege. París: Vrin, 1996
BENOIST, J. Husserl entre Brentano et Bolzano. Jugement et Proposition. Manuscrito: Revista internacional de filosofía, Vol. 23, Nº. 2, pp. 11-39, 2000.
BENOIST, J. Husserl and Bolzano. In: TYMIENIECKA, A.T. (Eds.) Phenomenology World-Wide. Analecta Husserliana, Vol 80. Dordrecht: Springer, 2002.
BRENTANO, F. Philosophical Investigations on Space, Time and the Continuum. New York: Taylor & Francis Group, 2010.
CANELA MORALES, L. A. El concepto fenomenológico de cinestesia y la correlación con las secuencias del campo visual: un análisis a las lecciones de Cosa y espacio de 1907, Eikasia. Revista de Filosofía, No. 47, pp. 751-76, 2013.
CANELA MORALES, L. A. De las cinestesias oculomotoras al espacio objetivo: la constitución del espacio tridimensional, Stoa. Revista de Filosofía, vol. 5, No. 9, pp. 5-18, 2014
CANELA MORALES, L. A. Aritmetización del análisis y construcción formal: Husserl como alumno de Weierstrass y Kronecker, Eikasia. Revista Filosofía, No. 72, pp. 131-148, 2016
CANELA MORALES, L. A. A Brief History of Concept of Manifold, META: Research in Hermeneutics, Phenomenology and Practical Philosophy, Vo. XI, No. 2, pp. 473-500, 2019
CANELA MORALES, LUIS A. Ser y calcular. El problema de las entidades matemáticas en la fenomenología temprana de Edmund Husserl, Colombia, Editorial Aula de Humanidades, 2023
CANTOR, G. Contributions to the Founding of the Theory of Transfinite Numbers. New York: Dover Publications, 1915.
CANTOR, G. Fundamentos para una teoría general de conjuntos. Escritos y correspondencia selecta. Barcelona: Crítica, 2006.
CENTRONE, S. Logic and Philosophy of Mathematics in the Early Husserl. Heidelberg/ London/New York: Springer, 2010.
DA SILVA, J. Husserl on Geometry and Spatial Representation, Axiomathes. Vol 22, No. 5, pp. 5–30, 2011.
DA SILVA, J. Husserl and Hilbert on Completeness, still. Synthese. Vol 193, No. 6, pp. 1925–1947, 2016
DEDEKIND, R. Gesammelte mathematische Werke (Dritter Band). Brunswick: Vieweg & Sohn Akt.-Ges, 1932.
DEDEKIND, R. ¿Qué son y para qué sirven los números? Y otros escritos sobre los fundamentos de la matemática. Madrid: Alianza, 2014.
FERREIRÓS, J. Riemann's Habilitationsvortrag at the Crossroads of Mathematics, Physics, and Philosophy. In: FERREIRÓS, J. y GRAY, J. J., (Eds.) The Architecture of Modern Mathematics. Essays in History and Philosophy. New York: Oxford University Press, 2006.
FERREIRÓS, J. Labyrinth of Thought: A History of Set Theory and its Role in Modern Mathematics. Basilea-Boston-Berlín: Birkhäuser, 2007.
FERREIRÓS, J. Conceptual Structuralism, Journal for General Philosophy of Science Vol, 54, pp. 125–148, 2023.
FINE, K. Cantorian Abstraction: A Reconstruction and Defense, Journal of Philosophy, Vol 95, No. 12, pp. 599–634, 1998
FISETTE, D, Husserl à Halle (1886-1901), Philosophiques, Vol 36, No. 2, pp. 277-306, 2009
GÉRARD, V. Husserl, élevé de Kronecker et Weierstrass: Theorie de la signification, théorie des nombres des fonctions, In: BENOIST, J. (Ed.), Husserl. Paris, Les Éditions du Cerf, 2008.
GÉRARD, V. Mathesis universalis et géométrie: Husserl et Grassmann. In: IERNA, C. et al. (Eds.) Philosophy, Phenomenology, Science. The Hague: Springer, 2010.
GOWERS, T. (Ed.) The Princeton Companion to Mathematics. Princeton: Princeton University Press, 2008.
HARTIMO, M. Grassmann's Influence on Husserl. In: PETSCHE, H.-J. et al. (Eds.) From Past to Future: Graßmann’s Work in Context, Basilea: Springer, 2011.
HUSSERL, E. Philosophie der Arithmetik. Mit ergänzenden Texten (1890-1901). The Hague: Martinus Nijhoff ,1970. [Hua XII].
HUSSERL, E. Ding und Raum. Vorlesungen 1907. Boston/Londres: Martinus Nijhoff, 1973. [Hua XVI].
HUSSERL, E. Studien zur Arithmetik und Geometrie. Texte aus dem Nachlass (1886-1901). The Hague: Martinus Nijhoff, 1983. [Hua XXI].
IERNA, C. The Beginnings of Husserl's Philosophy. Part 2: Mathematical and Philosophical Background. The New Yearbook for Phenomenology and Phenomenological Philosophy VI, Kentucky: Routledge/Taylor & Francis Group, 2006.
MAJER, U. Husserl and Hilbert on Completeness: A Neglected Chapter in Early Twenty Century Foundation of Mathematics, Synthese, Vol. 110, pp. 37-56, 1997.
MORAN, D. Husserl and Brentano. In: KRIEGEL, U. (Ed.). The Routledge Handbook of Franz Brentano and the Brentano School. New York: Routledge, 2017.
NIGRO PUENTE, G. Pureza del método y construcción de teorías: el caso de Kronecker y Dedekind en teoría algebraica de números, CRÍTICA. Revista Hispanoamericana de Filosofía. Vol. 55, No. 164, pp. 57–91, 2023.
ORTIZ HILL, C. Husserl and Hilbert on Completeness. In: HINTIKKA, J. (Ed.) From Dedekind to Gödel, Dordrecht: Kluwer Academic Publishers, 1995.
ORTIZ HILL, C. y DA SILVA, J. The Road not Taken. On Husserl΄s Philosophy of Logic and Mathematics. United Kingdom: College/Lighting Source/ Milton Keynes, 2013
RIEMANN, B. Riemanniana selecta, Madrid: CSIC, 2000.
ROLLINGER, R. Husserl’s Position in the School of Brentano. Netherlands: Springer, 1999.
ROLLINGER, R. Brentano and Husserl. In. D. JACQUETTE (Ed.) The Cambridge Companion to Brentano, United Kingdom: Cambridge University Press, 2004.
ROSADO HADDOCK, G. (2017). Husserl and Riemann. In. S. Centrone, (Ed.) Essays on Husserl’s Logic and Philosophy of Mathematics (pp. 229-243), Dordrecht: Springer.
ROUBACH, M. Phenomenology and Mathematics. Elements in the Philosophy of Mathematics, United Kingdom / New York, Cambridge University Press, 2023.
SEBESTIK, J. Husserl Reader of Bolzano. In. FISETTE, D. (Ed.), Husserl’s Logical Investigations Reconsidered. Netherlands/Boston/London: Kluwer Akademic Publishers, 2003.
SCHUHMANN, K. y E. SCHUHMANN (Eds.) Husserls Manuskripte zu seinem Göttinger Doppelvortrag von 1901, Husserl Studies Vol. 17, pp. 87–123, 2001.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Luís Canela
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in Griot: Revista de Filosofia maintain the copyright and grant the magazine the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution 4.0 International License, allowing sharing and adaptation, even for commercial purposes, with due recognition of authorship and initial publication in this journal. Read more...