Atividade antifúngica do óleo essencial de Lippia alba em Aspergillus welwitschiae
Palabras clave:
atividade antimicrobiana, metabolismo secundário, cidreiraResumen
Among the various compounds of secondary plant metabolism, essential oils have great antimicrobial potential. Studies have evaluated its action in controlling pests and diseases. In this context, to validate this property, the antifungal activity of Lippia alba essential oil was evaluated in an in vitro assay on Aspergilus welwitschiae. Essential oils from two accessions of L. alba (L01 and L02) were used, extracted from leaves of plants aged 30, 60 and 90 days after transplantation (DAT). The major components identified for accession L01 were carvone, limonene and germagrene D and for accession L02 o-cymene, caryophyllene oxide, a-citral and b-citral. The percentages of major compounds varied significantly as a function of plant age. The accessions experienced the ability to follow the mycelial growth of A. welwitschiae, enthusiastic growth velocity and spore production. The results of this study indicate that the essential oils of L. alba have potential as an antifungal agent against A. welwitschiae.
Descargas
Citas
Adams, R.P. (2007). Review of identification of oil components by gas chromatography/mass spectrometry, 4th edition. Journal of the American Society for Mass Spectrometry, 18 (4), 803-806. DOI: https://doi.org/10.1016/j.jasms.2007.01.001
Al-Samarrai, G., Singh, H., & Syarhabil, M. (2012). Evaluating eco-friendly botanicals (natural plant extracts) as alternatives to synthetic fungicides. Annals of Agricultural and Environmental Medicine, 19 (4), 673-676. Recuperado de: https://www.aaem.pl/pdf-71842-9068?filename=Evaluating%20eco_friendly.pdf
Camilo, C. J., et al. (2022). Traditional use of the genus Lippia sp. and pesticidal potential: a review. Biocatalysis And Agricultural Biotechnology, 40, 102296. DOI: http://dx.doi.org/10.1016/j.bcab.2022.102296
Chavan, M. J., Shinde, D. B. & Nirmal, S.A. (2006). Major volatile constituents of Annona squamosa L. bark. Natural Product Research, 20 (8), 754-757. DOI: https://doi.org/10.1080/14786410500138823
Chen, Y., et al. (2013). Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. Journal of Medical Microbiology, 62 (8), 1175-1183. DOI: https://doi.org/10.1099/jmm.0.055467-0
Clinical and Laboratory Standards Institute. (2008). Reference method for broth dilution antifungal susceptibility testing of yeast; approved standard (Documento M27-A2, second ed, vol.22, n.15). Pennsylvania:CLSI.
Coleman-Derr, D., et al. (2016). Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytologist, 209 (2), 798–811. DOI: DOI: https://doi.org/10.1111/nph.13697
Costa, P. S., et al. (2020). Antifungal activity and synergistic effect of essential oil from Lippia alba against Trichophyton rubrum and Candida spp. Revista Virtual de Química, 12 (6), 1529-1540. DOI: https://doi.org/10.21577/1984-6835.20200119
Duarte, A. A. E., et al. (2018). Putting the mess in order: Aspergillus welwitschiae (and not A. niger) is the etiological agent of sisal bole rot disease in Brasil. Frontiers in Microbiology, 9, 1-21. DOI: https://doi.org/10.3389/fmicb.2018.01227
Gama, E. V. S., et al. (2015). Homeopathic drugs to control red rot disease in sisal plants. Agronomy for Sustainable Development, 35, 649–656. DOI: https://doi.org/10.1007/s13593-014-0255-0
Glamočlija, J., et al. (2011). Chemical characterization of Lippia alba essential oil: an alternative to control green molds. Brazilian Journal of Microbiology, 42 (4), 1537-1546. DOI: https://doi.org/10.1590/S1517-83822011000400041
Gonzaga, W. A., et al. (2003). Composition and antibacterial activity of the essential oils from Zanthoxylum rhoifolium. Planta Medica, 69 (8), 773-775. DOI: http://dx.doi.org/10.1055/s-2003-42783
Joulain, D., & König, W. A. (1998). The atlas of spectral data of sesquiterpene hydrocarbons (658p).Hamburg-Germany: EB-Verlag.
Leite, P. M., et al. (2023). Antithrombotic potential of Lippia alba: a mechanistic approach. Journal of Ethnopharmacology, 301, 115744. DOI: http://dx.doi.org/10.1016/j.jep.2022.115744
Lew, R. R. (2011). How does a hypha grow? The biophysics of pressurized growth in fungi. Nature Reviews Microbiology, 9, 509-518. DOI: https://doi.org/10.1038/nrmicro2591
Malik, S., et al. (2021). New insights into the biotechnology and therapeutic potential of Lippia alba (Mill.) N.E.Br. ex P. Wilson. Journal of Essential Oil Research, 33 (6), 523-535. DOI: http://dx.doi.org/10.1080/10412905.2021.1936667
Moreno, E. M., et al. (2018). Induction of programmed cell death in Trypanosoma cruzi by Lippia alba essential oils and their major and synergistic terpenes (citral, limonene and caryophyllene oxide). BMC Complementary and Alternative Medicine, 18 (225), 1-16. DOI: https://doi.org/10.1186/s12906-018-2293-7
Oliveira, J. A. (1991). Efeito do tratamento fungicida em sementes no controle de tombamento de plântulas de pepino (Cucumis sativas L.) e pimentão (Capsicum annanum L.) (111 f). Dissertação de Mestrado, Universidade Federal de Agricultura de Lavras, Lavras, MG, Brasil. Recuperado de: http://repositorio.ufla.br/handle/1/33483
Peixoto, M. G., et al. (2018). Activity of essential oils of Lippia alba chemotypes and their major monoterpenes against phytopathogenic fungi. Bioscience Journal, 34 (5), 1136-1146. DOI:
https://doi.org/10.14393/BJ-v34n5a2018-39385
Petropoulos, S., et al. (2018). Antimicrobial and antioxidant properties of various Greek garlic genotypes. Food Chemistry, 245, 7-12. DOI: http://dx.doi.org/10.1016/j.foodchem.2017.10.078
Rao, A., et al. (2010). Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrobial Agents and Chemotherapy, 54 (12), 5062–5069.
DOI: https://doi.org/10.1128/AAC.01050-10
Sales, G., et al. (2022). Antifungal and modulatory activity of Lemon Balm (Lippia alba (MILL.) N. E. BROWN) Essential Oil. Scientia Pharmaceutica, 90 (31), 1-16. DOI: https://doi.org/10.3390/scipharm90020031
Santos Filho, L. G. A., et al. (2023). Chemical composition and biological activities of the essential oils from Lippia alba and Lippia origanoides. Anais da Academia Brasileira de Ciências, 95 (1): e20220359. DOI: https://doi.org/10.1590/0001-3765202320220359
Statistical Analysis System. (2006). SAS/STAT Technical Report (Version 9.1.3.) [Software].Cary: SAS Institute Inc.
Silva, R. R. F., et al. (2021). Sisal: importância socioeconômica. Embrapa, Recuperado de: https://www.embrapa.br/agencia-de-informacao-tecnologica/cultivos/sisal/pre-producao/socioeconomia/importancia-socioeconomica
Simić, A., et al. (2004). The chemical composition of some Lauraceae essential oils and their antifungal activities. Phytotherapy Research, 18 (9), 713-717. DOI: https://doi.org/10.1002/ptr.1516
Teles, S., et al. (2013). Effect of geographical origin on the essential oil content and composition of fresh and dried Mentha x villosa Hudson leaves. Industrial Crops and Products, 46, 1-7. DOI: https://doi.org/10.1016/j.indcrop.2012.12.009
Descargas
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Autores que publicam nesta revista concordam com os seguintes termos:- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.