Effect of pyraclostrobin on the production of garlic plants from virus-infected bulbils

Production of virus-infected Garlic plants treated with Pyraclostrobin

Authors

Keywords:

Strobilurin, garlic viruses, virus control.

Abstract

One of the main challenges that producers face in garlic cultivation is obtaining healthy propagative material, free from the main species of Potyvirus, Carlavirus and Allexivirus, which cause large losses in production. Pyraclostrobin has been used in attempts to reduce losses caused by viruses, due to its positive effect on improving performance and inducing resistance to viruses in plants. In this work, the effect of two commercial products containing pyraclostrobin, CabrioTop® and Orkestra®, on the production of known virus-infected garlic seed bulbils was tested. The experiment was conducted in the field, in the municipality of São Gotardo – MG, with a randomized block design, using 400 bulbils per plot, with a useful plot of 32 plants and four replications. Several doses and application ways were tested, such as bulb treatment, incorporation into the soil and foliar application. After harvesting and the curing process, were evaluated the weight (g), diameter (mm) and number of bulbils produced. No positive effects were observed from the use of Pyraclostrobin in the different treatments carried out. However, possible causes and alternatives for carrying out experiments that could generate more information on the application of pyraclostrobin on the performance of infected garlic plants were discussed.

Downloads

Download data is not yet available.

Author Biographies

Gabriela, Universidade Federal de Lavras/Departamento de Fitopatologia

MSc Student from march/2020 to February/2023

Carlos Inácio Garcia Oliveira, Supere Consultoria Agronômica

Sócio proprietário da firma citada.

 

Antonia Thalyta Lopes Silveira, Universidade Federal de Lavras/Departamento de Fitopatologia

Pós-Doc no Departamento de Fitopatologia desde Março/2023.

References

Arabidopsis Functional Genomics Consortium. (2021). DNA microarray protocols 2021. Recuperado em 16 janeiro, 2022 de: https://www.arabidopsis.org/download/file?path=Protocols%2FAFGCProtocols-Aug2001.pdf.

Altieri, L., et al. (2022). Garlic (Allium spp.) viruses: detection, distribution and remediation attempts in a European garlic collection. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50 (3), 12779-12779. DOI: https://doi.org/10.15835/nbha50312779

Ayed, C., et al. (2022). First Report of Garlic virus A, Garlic virus B, and Garlic virus C on Garlic (Allium sativum) in Tunisia. Plant Disease, 106 (4), 1312. DOI: https://doi.org/10.1094/PDIS-08-21-1706-PDN

BASF Agricultural Solutions. (2022a). Cabrio®Top: fungicida para hortifrúti. Recuperado em 16 janeiro, 2022 de: https://agriculture.basf.com/br/pt/protecao-de-cultivos-e-sementes/produtos/cabrio-top.html.

BASF Agricultural Solutions. (2022b). Orkestra®SC: fungicida multicultural. Recuperado em 16 janeiro, 2022 de https://agriculture.basf.com/br/pt/protecao-de-cultivos-e-sementes/produtos/orkestra-sc/bula-orkestrasc.html.

Bessa, A., et al. (2021). Degenerescence of virus-free garlic cultivars in altitude conditions in the Semiarid region of the Northeast of Brazil. Horticultura Brasileira, 39 (2), 236-2240. DOI: https://doi.org/10.1590/S0102-0536-20210216

Companhia Nacional de Abastecimento. (2023). Análise Mensal: Alho, Agosto. Recuperado em 20 dezembro de 2023, de: https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuario-e-extrativista/analises-do-mercado/historico-mensal-de-alho.

Cremer, J., et al. (2021). Detection and distribution of viruses infecting garlic crops in Australia. Plants, 10 (5), 1013. DOI: https://doi.org/10.3390/plants10051013

Dal Cortivo, C., et al.(2017). Biostimulant effects of seed-applied sedaxane fungicide: morphological and physiological changes in maize seedlings. Frontiers in plant science, 8, 2072. DOI: https://doi.org/10.3389/fpls.2017.02072

Fagan, E. B., et al.(2010). Efeito da aplicação de piraclostrobina na taxa fotossintética, respiração, atividade da enzima nitrato redutase e produtividade de grãos de soja. Bragantia, 69 (4), 771-777. DOI: https://doi.org/10.1590/S0006-87052010000400001

Godena, S., et al.(2020). Incidence of viruses in cloves and bulbils of garlic ecotypes in Croatia. Acta Scientiarum polonorum hortorum cultus, 19 (5), 91-100. DOI: https://doi.org/10.24326/asphc.2020.5.10

Freitas Groff, V. L., et al.(2020). Influência do teor de nitrogênio no efeito verde causado por piraclostrobina em plantas de trigo. Revista Brasileira de Tecnologia Aplicada nas Ciências Agrárias, 13 (1). DOI: https://doi.org/10.5935/PAeT.V13.e5964

Foundation for Statistical Computing. (2022). R Core Team: a language and environment for statistical computing. Vienna, Austria: Foundation for Statistical Computing. URL https://www.R-project.org/.

Instituto Brasileiro de Geografia e Estatística. (2023). Produção de Alho. Recuperado em 20 setembro, 2024 de: https://www.ibge.gov.br/explica/producao-agropecuaria/alho/br.

Jadoski Jr., C., et al.(2015). Ação fisiológica da piraclostrobina na assimilação de CO2 e enzimas antioxidantes em plantas de feijão condicionado em diferentes tensões de água no solo. Irriga, 20 (2), 319-333.

Liang, S., Xu, X., & Lu, Z. (2018). Effect of azoxystrobin fungicide on the physiological and biochemical indices and ginsenoside contents of ginseng leaves. Journal of Ginseng Research, 42 (2), 175-182. DOI: https://doi.org/10.1016/j.jgr.2017.02.004

Mahoney, K. J., Vyn, R. J., & Gillard, C. L. (2015). The effect of pyraclostrobin on soybean plant health, yield, and profitability in Ontario. Canadian Journal of Plant Science, 95 (2), 285-292. DOI: https://doi.org/10.4141/cjps-2014-125

Mansouri, F., & Ryšánek, P. (2021). Allexivirus: review and perspectives. Phytopathologia Mediterranea, 60 (3), 389-402. DOI: https://doi.org/10.36253/phyto-12043

Marafon, C. A., & Simonetti, A. P. M. M. (2012). Avaliação de parâmetros produtivos e severidade de ferrugem na cultura do milho. Revista Brasileira de Energias Renováveis, 1, 221-238.DOI:10.5380/RBER.V1I1.33756

Marodin, J. C., et al.(2019). Agronomic performance of both virus-infected and virus-free garlic with different seed bulbs and clove sizes. Pesquisa Agropecuária Brasileira, 54, e01448. DOI: https://doi.org/10.1590/S1678-3921.pab2019.v54.01448

Melo Filho, P. D. A., et al.(2004). Detection of three Allexivirus species infecting garlic in Brazil. Pesquisa Agropecuária Brasileira, 39 (8), 735-740. DOI: https://doi.org/10.1590/S0100-204X2004000800002

Mituti, T., et al. (2015). Survey of viruses belonging to different genera and species in noble garlic in Brazil. Scientia Agricola, 72 (3), 278-281. DOI: https://doi.org/10.1590/0103-9016-2014-0168

Oliveira, M. L., et al. (2014). Identification and sequence analysis of five allexiviruses species infecting garlic crops in Brazil. Tropical Plant Pathology, 39 (6), 483-489. DOI: https://doi.org/10.1590/S1982-56762014000600011

Park, K. S. et al. (2005).RT-PCR-based detection of six garlic viruses and their phylogenetic relation ships. Journal of Microbiology and Biotechnology,15(5), 1110-1114.

Paul, P. A., et al. (2011). Meta-analysis of yield response of hybrid field corn to foliar fungicides in the US Corn Belt. Ecology and Epidemiology, 101 (9), 1122-1132. DOI: https://doi.org/10.1094/PHYTO-03-11-0091

Prajapati, M. R., et al. (2022). Identification and characterization of a garlic virus E genome in garlic (Allium sativum L.) using high-throughput sequencing from India. Plants, 11 (2), 224.DOI: https://doi.org/10.3390/plants11020224

Roylawar, P. B., et al. (2021). First report of garlic virus B infecting garlic in India. Plant Disease, 105 (4), 1232-1232. DOI: https://doi.org/10.1094/PDIS-01-20-0156-PDN

Schumacher, P. V., et al. (2017). Resposta de híbridos de milho ao uso de piraclostrobina na ausência de doenças. Arquivos do Instituto Biológico, 84, e0362015. DOI: https://doi.org/10.1590/1808-1657000362015

Shemesh-Mayer, E., et al. (2022). Garlic Potyviruses are translocated to the true seeds through the vegetative and reproductive systems of the mother plant. Viruses, 14 (10), 2092. https://www.mdpi.com/1999-4915/14/10/2092

Shetley, J., et al. (2015). Corn yield response to pyraclostrobin with foliar fertilizers. Journal of Agricultural Science, 7 (7), 18.DOI: http://dx.doi.org/10.5539/jas.v7n7p18

Sulewska, H., et al. (2019). Can pyraclostrobin and epoxiconazole protect conventional and stay-green maize varieties grown under drought stress? PloS one, 14(8), e0221116. DOI: https://doi.org/10.1371/journal.pone.0221116

Taiz, L., et al. (2021). Fundamentos de Fisiologia Vegetal (6 ed.). Porto Alegre – RS: Artmed Editora.

Taglienti, A., et al. (2018). Molecular identification of allexiviruses in a complex mixture of garlic viruses in Latium (central Italy). European Journal of Plant Pathology, 150, 797-801. DOI: https://doi.org/10.1007/s10658-017-1315-5

Vilela, R. G., et al. (2012). Desempenho agronômico de híbridos de milho, em função da aplicação foliar de fungicidas. Bioscience Journal, 28 (1), 25-33. Disponível em: https://seer.ufu.br/index.php/biosciencejournal/article/view/11672/8229

Zheng, L., et al. (2008). Accumulating variation at conserved sites in potyvirus genomes is driven by species discovery and affects degenerate primer design. PLoS One, 3 (2), e1586. DOI: https://doi.org/10.1371/journal.pone.0001586

Published

2024-10-09

How to Cite

Gontijo, G. R., Figueira, A. dos R., Oliveira, C. I. G., & Silveira, A. T. L. (2024). Effect of pyraclostrobin on the production of garlic plants from virus-infected bulbils: Production of virus-infected Garlic plants treated with Pyraclostrobin. MAGISTRA, 34. Retrieved from https://periodicos.ufrb.edu.br/index.php/magistra/article/view/4894

Issue

Section

Artigo Científico

Categories

Similar Articles

You may also start an advanced similarity search for this article.