Bagaço de cana-de-açúcar e bagaço de sisal como substratos indutores para a produção de endoglucanase por actinobacteria isolada de solo de cultura de sisal

Authors

  • Dayse Batista dos Santos Universidade Federal do Recôncavo da Bahia
  • Aline Simões da Rocha Bispo Universidade Federal do Recôncavo da Bahia
  • Rodrigo Pires do Nascimento Universidade Federal do Rio de Janeiro
  • Márcia Luciana Cazetta Universidade Federal do Recôncavo da Bahia

Abstract

Resumo: Uma linhagem de actinobactéria, isolada de solo de cultura de sisal (Agave sisalana
Perrine) no semiárido baiano, denominada ARA-01, foi selecionada como uma linhagem promissora
para a produção de endoglucanase em substratos agroindustriais. Bagaço de cana-de-açúcar e
bagaço de sisal foram empregados como fonte de carbono e água de maceração de milho como fonte
de nitrogênio, em fermentação submersa do tipo batelada. Os resultados mostraram que o meio
contendo 2,4 % de bagaço de cana-de-açúcar e 1,3 % de água de maceração de milho levaram a
uma produção de 230 U.L-1 de endoglucanase, no segundo dia de fermentação. Com o bagaço de
sisal foi obtida produção de 630 U.L-1 de endoglucanase na condição de 1,6 % de bagaço de sisal e
1,5 % de água de maceração de milho, após 3 dias de fermentação. Estes resultados mostraram que
a actinobacteria ARA-01 e os substratos agroindustriais utilizados apresentaram bom potencial para
produção de endoglucanase.
Palavras chave: Enzimas microbianas, Substratos agroindustriais, Bactéria.

Downloads

Download data is not yet available.

References

Barros, R.R.O., Oliveira, R.A., Gottschalk,

L.M.F & Bom, P. S.(2010). Production of

cellulolytic enzymes by fungi Acrophialophora

nainiana and Ceratocystis paradoxa using

different carbon sources. Applied Biochemistry

and Biotechnology. 161, 448–454.

Breccia JD, Castro, GR, BaigorI, MD & Sineriz

F. (1995) Screening of xytanolytic bacteria

using a colour plate method. Journal of Applied

Bacteriology. 78 (5) 469–472.

Chen W.P., Anderson, A.W. & Han, Y.W.

(1979) Production of glucose isomerase by

Streptomyces flavogriseus. Applied

Environmental Microbiology. 37, 324–331.

Cunha, F.M., Esperança, M.N., Zangirolami,

T.C., Badino, A.C. & Farinas, C.S. (2012).

Sequential solid-state and submerged

cultivation of Aspergillus niger on sugarcane

bagasse for the production of cellulose.

Bioresource Technology. 112, 270–274.

Da Vinha, F.N.M., Gravina-Oliveira, M.P.,

Franco, M.N., Macrae, A., Bon, E.P.S.,

Nascimento, R.P. & Coelho, R.R.R. (2011).

Cellulase production by Streptomyces

viridobrunneus SCPE-09 using lignocellulosic

biomass as inducer substrate. Applied

Biochemistry and Biotechnology. 164, 256-

De Azeredo, L.A.I., De Lima, M.B., Coelho,

R.R.R. & Freire, D.M.G. (2006). A low-cost

fermentation medium for thermophilic protease

production by Streptomyces sp 594 using

feather meal and corn steep liquor. Current

Microbiology. 53, 335–339.

Delabona, P. S., Pirota, R. D. P. B., Codima, C.

A., Tremacoldic, C. R., Rodrigues, A. &

Farinas, C.S. (2013). Effect of initial moisture

content on two Amazon rainforest Aspergillus

strains cultivated on agro-industrial residues:

biomass-degrading enzymes production and

characterization. Industrial Crops and

Products. 42, 236-242.

Embrapa Algodão (2004). Embrapa apresenta

sisal como suporte na alimentação de rebanho.

Recuperado em julho de 2013 de http://

www.embrapa.br.

Faria, M.M.S., Jaeger, S.M.P.L., Oliveira,

G.J.C., Ledo, C.A.S., Silva, A.M., Lopes,

N.C.M. & Santana, F.S. (2008). Composição

bromatológica do co-produto do desfibramento

do sisal submetido à auto-fermentação.

Magistra, 20 (1), 30-35.

Fischer, J., Lopes, V.S., Queiroz, E.F.Q.,

Coutinho Filho, U. & Cardoso, V.L. (2014).

Second generation ethanol production using

crude enzyme complex produced by fungi

collected in Brazilian Cerrado (Brazilian

Savanna). Chemical Engineering Transactions,

, 487-492.

George, S.P., Ahmad, A. & Rao, M.B. (2001).

Studies of carboxymethyl cellulose produced

by alkalothermophilic actinobacteria.

Bioresource Technology. 77, 171-175.

Ghose, T.K. (1987). Measurements of cellulase

activities. Pure Applied Chemistry, 59, 257-

Grigorevski-Lima, A.L., Nascimento, R.P.,

Bom, E.P.S. & Coelho, R.R.R. (2005).

Streptomyces drozdowiczii cellulase production

using agro-industrial by-products and its

potential use in the detergent and textile

industries. Enzyme and Microbial Technology,

, 272-277.

Gomathi, D., Muthulakshmi, D., Guru Kumar,

D., Ravikumar, G., Kalaiselvi M. (2012).

Submerged fermentation of wheat bran by

Aspergillus flavus for production and

characterization of carboxyl methyl cellulase.

Asian Pacific Journal of Tropical Biomedicine.

S67-S73.

Hideno, A,, Inoue, H., Tsukahara, K., Yano, S.,

Fang, X., Endo, T. & Sawayama, S. (2011).

Production and characterization of cellulases e

hemicellulases by Acremonium cellulolyticus

using rice straw subjected to various

pretreatment as carbon source. Enzyme and

Microbial Technology, .48, 162-168.

Hopwood, D. A., Bibb, M. J., Chater, K. F.,

Kieser, T., Bruton, C.J., Kieser, H.M., Lydiate,

D.J., Smith, C.P., Ward, J.M. & Schrempf, H.

(1985). Genetic Manipulation of Streptomyces:

A Laboratory Manual. Norwich, UK: The John

Innes Institute.

Jang, H.D. & Chen, K.S. (2003). Production

and characterization of thermostable cellulases

from Streptomyces transformant T3-1. World

Journal Microbiology and Biotechnology, 19,

-268.

Kalogeris, E., Christakopoulos, P., Katapodis,

P., Alexiou, A., Vlachou, S., Kekos, D. &

Macris, B.J. (2003). Production and characterization of cellulolytic enzymes from

thermophilic fungusThermoascus aurantiacus

under solid state cultivation of agricultural

wastes. Process Biochemistry, 38, 1099-1104.

Joseph, K., Tolêdo Filho, R.D., Sabu, B.J.,

James, B., Thomas, S. & Carvalho, L.H.

(1999). A review on sisal fiber reinforced

polymer composites. Revista Brasileira de

Engenharia Agrícola e Ambiental, 3 (3), 367-

Macedo, E.P., Cerqueira, C.L.O., Souza,

D.A.J., Bispo, A.S.R., Coelho, R.R.R. &

Nascimento, R.P. (2013). Production of

cellulose degrading enzyme on sisal and other

agro-industrial residues using a new brazilian

actinobacteria strain Streptomyces sp. SLBA-

Brazilian Journal of Chemical Engineering,

(4), 729-735.

Maeda, R.N., Da Silva, M.M.P., Santa Anna,

L.M.M. & Pereira, J.R.N. (2010). Nitrogen

source optimization for cellulase production by

Penicillium funiculosum, using a sequential

experimental design methodology and the

desirability function. Applied Biochemistry and

Biotechnology, 161, 411–422.

Maeda, R.N., Barcelos, C.A., Santa Anna,

L.M.M. & Pereira Jr., N. (2013). Cellulase

production by Penicillium funiculosum and its

application in the hydrolysis of sugar cane

bagasse for second generation ethanol

production by fed batch operation. Journal of

Biotechnology, 163, 38-44.

Martin, A.R., Martins, M.A., Mattoso, L.H.C. &

Silva, O.R.R.F. (2009). Caracterização química

e estrutural de fibra de sisal da variedade

Agave sisalana. Polímeros: Ciência e

Tecnologia, 19 (1), 40-46.

Megiatto Jr., J.D. (2006). Fibras de sisal:

estudo das propriedades e modificações

químicas visando a aplicação em compostos

de matriz fenólica (267f.). Tese de Doutorado,

Universidade de São Paulo, Instituto de

Química, São Carlos, SP, Brasil.

Miller, G.L. (1959). Use of dinitrosalicylic acid

reagent for determination of reducing sugars.

Analytical Chemistry 31, 426-429.

Mirza, M.A. & Mushtaq, T. (2006). Effect of

supplementing different levels of corn steep

liquor on the post-weaning growth performance

of pak-karakul lambs. Pakistan Veterinarian

Journal, 26 (3), 135-137.

Nascimento, R.P., Junior, N.A., Pereira Jr., N.,

Bom, E.P.S. & Coelho, R.R.R. (2009).

Brewer´s spent grain and corn steep liquor as

substrates for cellulolytic enzymes production

by Streptomyces malaysiensis. Letters in

Applied Microbiology, 48, 529-535.

Pandey, A., Soccol, C.R., Nigam, P. & Soccol,

V.T. (2000). Biotechnological potential of agroindustrial

residues. I: sugarcane bagasse.

A review. Bioresource Technology, 74, 69-80.

Parekh, M., Formanek, J. & Blaschek, H.P.

(1999). Pilot-scale production of butanol by

Clostridium beijerinckii BA 101 using a low-cost

fermentation medium based on corn steep

water. Applied Microbiology and Biotechnology,

, 152–157.

Pharazyn, A. & Nortey, T. Corn steepwater/

liquor as a feed ingredient for swine. Nutrifax:

nutrition News and Information Update. Shur-

Gain, Nutreco Canada Inc. Recuperado em 24

de outubro de 2013 de

http://www.wrightsfeeds.ca.

Salazar, V. L. P. & Leão, A. L. (2006).

Biodegradação das fibras de coco e de sisal

aplicadas na indústria automotiva. Energia e

Agricultura, 21 (2), 99-133.

Sazci, A., Radford, A. & Erenler, K. (1986).

Detection of cellulolytic fungi by using Congo

red as an indicator : a comparative study with

the dinitrosalicyclic acid reagent method.

Journal of Applied Bacteriology, 61, 559-562.

Semêdo, L. T. A. S., Gomes, R. C., Bon, E. P.

S., Soares, R. M. A., Linhares, L. F. & Coelho,

R. R. R. (2000). Endocellulases and

exocellulases activities of two Streptomyces

spp. isolated from a forest soil. Applied

Biochemistry and Biotechnology, 84-86, 267-

Sindicato das Indústrias de Fibras Vegetais da

Bahia (2007). Recuperado em agosto de 2013

de www.brazilsisal.com.

Sharma, M (2014). Actinomycetes: source,

identification, and their applications.

International Journal of Current Microbiology

and Applied Sciences, 3 (2), 801-832, 2014.

Shirling, E.B. & Gottlieb, D. (1966). Methods for

characterization of Streptomyces species.

International Journal of Systematic

Bacteriolog,. 16 (3), 313-340.

Sukumaran, R.K., Singhania, R.R., Mathew,

G.M. & Pandey, A. (2009). Cellulase

production using biomass feed stock and its

application in lignocellulose saccharification for

bio-ethanol production. Renewable Energy. 34,

–424.

Wilson, D.B. (2009). Cellulases e biofuels.

Current Opinion of Biotechnology, 20, 295-299.

Xiao, X., Hou, Y., Du, J., Liu, Y., Dong, L.,

Liang, Q., Wang, Y., Bai, G. & Luo, G.(2012).

Determination of main categories of

components in corn steep liquor by nearinfrared

spectroscopy and partial least square

regression. Journal of Agricultural and Food

Chemistry, 60, 7830-7835.

Published

2015-04-01

How to Cite

Santos, D. B. dos, Bispo, A. S. da R., Nascimento, R. P. do, & Cazetta, M. L. (2015). Bagaço de cana-de-açúcar e bagaço de sisal como substratos indutores para a produção de endoglucanase por actinobacteria isolada de solo de cultura de sisal. MAGISTRA, 27(2), 235–244. Retrieved from https://periodicos.ufrb.edu.br/index.php/magistra/article/view/3911

Issue

Section

Artigo Científico