The intuitionism and the problem with non-constructive proofs

Authors

DOI:

https://doi.org/10.31977/grirfi.v15i1.749

Keywords:

Intuitionism; Mathematicals Proofs; Excluded Middle; Nonclassical Logic.

Abstract

This article aims to evaluate the intuitionist problem with non-constructive mathematicals proofs. For this constructivist position the principle of the excluded middle, of classical logic, shouldn't operate on mathematical demonsrations. Non-constructive proofs aren't accepted, and the constructive proofs are the only with positive character. After a brief introduction about intuitionism and its creator, the article will address the relationship between the principle of the excluded middle and the mathematicals demonstrations, so to talk about the problem of non-constructive proofs and the consequences for not to accepting them. Taking the mathematics only as a mental construction project, the intuitionism break with the dominant platonic realism and establishing a fruitful debate on the foundations of mathematics.

Downloads

Download data is not yet available.

Author Biography

Diego Henrique Figueira de Melo, Universidade Federal de Minas Gerais (UFMG)

Doutorando em Filosofia pela Universidade Federal de Minas Gerais (UFMG), Minas Gerais – Brasil.

References

BROUWER, L. On the foundations of mathematics. In: HEYTING, A. (Ed.). Collected Works 1: Philosophy and foundations of mathematics. New York: American Elsevier Publishing Company, 1975.

DA COSTA, N. Ensaio sobre os fundamentos da lógica. 2. ed. São Paulo: Editora Hucitec, 1994.

DA COSTA, N. Introdução aos fundamentos da matemática. 3. ed. São Paulo: Editora Hucitec, 1992.

GEORGE, A; VELLEMAN, D. Philosophies of mathematics. Oxford: Blackwell Publishers, 2002.

IEMHOFF, R. Intuitionism in the philosophy of mathematics. The Stanford Encyclopedia of philosophy. Spring 2015 Edition. Disponível em: <http://plato.stanford.edu/archives/spr2015/entries/intuitionism/>. Acesso em: 19 mai. 2015.

MOSCHOVAKIS, J. Intuitionistic Logic. The Stanford Encyclopedia of philosophy. Spring 2015 Edition. Disponível em: <http://plato.stanford.edu/archives/spr2015/entries/logic-intuitionistic/>. Acesso em: 20 mai. 2015.

PALMGREN, E; BRIDGES, D. Constructive Mathematics. The Stanford Encyclopedia of philosophy. Winter 2013 Edition. Disponível em: <http://plato.stanford.edu/archives/win2013/entries/mathematics-constructive/>. Acesso em: 20 mai. 2015.

RODRIGUES FILHO, A. Lógica. São Paulo: Martins Fontes, 2011.

VAN ATTEN, M. Luitzen Egbertus Jan Brouwer. The Stanford Encyclopedia of philosophy. Summer 2011 Edition. Disponível em: <http://plato.stanford.edu/archives/sum2011/entries/brouwer/>. Acesso em: 20 mai. 2015.

VAN ATTEN, M. The development of intuitionistic logic. The Stanford Encyclopedia of philosophy. Spring 2014 Edition. Disponível em: <http://plato.stanford.edu/archives/spr2014/entries/intuitionistic-logic-development/>. Acesso em: 20 mai. 2015.

VAN DALEN, D. Logic and structure. 4. ed. Heidelberg: Springer, 2008.

Published

2017-06-18

How to Cite

MELO, Diego Henrique Figueira de. The intuitionism and the problem with non-constructive proofs. Griot : Revista de Filosofia, [S. l.], v. 15, n. 1, p. 100–110, 2017. DOI: 10.31977/grirfi.v15i1.749. Disponível em: https://periodicos.ufrb.edu.br/index.php/griot/article/view/749. Acesso em: 22 dec. 2024.

Issue

Section

Articles